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The evolution of a vertically propagating three-dimensional vortex pair in ambient
stratification is studied with a three-dimensional numerical model. We consider a
range of Reynolds (Re) and Froude (Fr) numbers, and initialize the vortex pair
in a configuration that promotes growth of the Crow instability (Crow 1970). The
growth rate of the instability is Re dependent, and we present a method for extending
Crow’s model to predict this dependence. We also find that relatively strong ambient
stratification (Fr 6 2) further alters the growth of the instability via advection by
baroclinically produced vorticity. For all of our cases with Fr > 1 (including our
unstratified cases where Fr → ∞), the instability leads to vortex reconnection and
formation of a vortex ring. A larger Re delays the commencement of the reconnection,
but it proceeds more rapidly once it does commence. We compute a reconnection time
scale (tR), and find that tR ∼ 1/Re, in agreement with a model formulated by Shelley
et al. (1993). We also discuss a deformative/diffusive effect (related to yet distinct from
the curvature reversal effect discussed by Melander & Hussain 1989) which prevents
complete reconnection. Ambient stratification (in the range Fr > 1) accelerates the
reconnection and reduces tR by an amount roughly proportional to 1/Fr. For some
Fr, stratification effects overwhelm the deformative effect, and complete reconnection
results.

1. Introduction
We discuss the results of direct numerical simulations of three-dimensional anti-

parallel vortex pairs evolving in ambient stratification. The study of anti-parallel
vortex pairs evolving under a variety of environmental conditions has general rele-
vance to the study of aircraft trailing vortices, which can pose considerable hazard to
other aircraft (Olsen, Goldburg & Rogers 1971). Spalart (1998) has recently presented
an excellent survey of this field that highlights the major controversies. Although our
restricted Reynolds number (Re) range prevents direct application of our results to
the pressing issues regarding real-world ATC methods, we note that three-dimensional
vortex pairs are also found within convective instabilities, such as those occurring
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Figure 1. Volume renderings of λ2 viewed from above showing large negative values of λ2 at the
times shown for the unstratified case with Re = 942.

in a breaking gravity wave (Andreassen et al. 1994) and fully-developed turbulence
(Rogers & Moin 1987), to name two examples.

Our purpose here is to investigate how stratification affects the evolution of anti-
parallel vortices, from their initial evolution dominated by the growth of the Crow
instability, to their reconnection and rearrangement into vortex rings. Overviews of
two of our simulations are shown in figures 1 (the unstratified case with Re = 942) and
2 (the case with Re = 942 and Fr = 2, where Froude number Fr is defined in § 2.2);
although the flow evolves continuously in time, we will separately discuss the different
mechanisms that control the flow during different stages of the evolution. For our
solutions, the Crow instability is the dominant mechanism from the initialization of
the flow to about t ' 3.5–4, while the subsequent vortex reconnection is the dominant
mechanism from roughly that time to t ' 6–8 (these time scales depend on Re and Fr ;
see figures 1 and 2, and 7 and 11). As much previous work exists on both the Crow
instability and the general topic of vortex reconnection, we now include introductory
material for both.
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Figure 2. Volume renderings of both λ2 and |ω| viewed from above at the times shown for the case
with Re = 942 and Fr = 2. The colour and opacity scales are such that large negative values of λ2

are blue and opaque, while large values of |ω| are red and opaque, and small values of |ω| are green
and transparent. The green cloud of vorticity outside the primary vortices stems from baroclinic
production (see § 4.2 and figure 13).

Using a linear perturbation analysis of anti-parallel vortex tubes (with constant
cross-section) in an unstratified, incompressible, and inviscid fluid, Crow (1970) found
that the wavelength of the most unstable mode of instability could be found from the
ratio of the radius of the vortex cores (rc, or c/2 in Crow’s notation) to their separation
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distance (b0). A result frequently used from his analysis is that for rc/b0 = 0.098 (or
d/b0 = 0.063 in the notation of Crow’s paper), the fastest growing mode of instability
is symmetric, has a wavelength of 8.6b0, increases in amplitude with a growth period
(or e-folding time) of T = 1.21b0/W0 (where W0 is the initial vertical velocity of the
vortex tubes), and evolves on each tube in a plane tilted at 48◦ from the horizontal
(for a vertically-propagating vortex pair). Moore (1972) later showed that even after
the instability reaches large (and hence, nonlinear) amplitudes, it continues to grow
with its properties in rough agreement with the linear theory, even until the time at
which the two vortex tubes come into contact with one another.

There has been longstanding interest (e.g. Lissaman et al. 1973) in how ambient
conditions such as stratification, mean shear, and turbulence affect the growth of the
Crow instability (and the subsequent vortex ring formation and evolution). In his
recent review, Spalart (1998) discusses two different approaches used to investigate
these issues in the context of air safety: the predictable decay (PD) view, in which the
strength of the vortices is assumed to gradually decay to a safe level within a time
estimated straightforwardly from the environmental conditions (see, e.g. Crow & Bate
1976 and Greene 1986), and the stochastic collapse (SC) view, in which the strength of
the vortices is assumed to remain constant until instability processes or other effects
initiated by the environmental conditions or non-uniformity of the vortices act to
dissipate the kinetic energy. We believe in the SC view, and for our laminar numerical
simulations the circulation of the vortex tubes is indeed conserved (less a small
total loss caused by cross-diffusion – see § 4.1) until baroclinically produced vorticity
(formed due to the ambient stratification) interacts with the vortices (see § 4.2).

Most work investigating the effects of ambient stratification on vertically propagat-
ing vortex pairs has unfortunately been limited to the study of two-dimensional vortex
pairs, which cannot undergo the three-dimensional Crow instability. Recent numerical
simulations by Schilling, Siano & Etling (1996), Spalart (1996), Garten (1997), and
Garten et al. (1998) have shown that weak ambient stratification (Fr > 1) causes a de-
crease in separation distance and subsequent acceleration of laminar two-dimensional
vortex pairs, in general agreement with the predictions of Crow (1974) and Scorer &
Davenport (1970), and the experimental results of Tomassian (1979). However, this
two-dimensional result may not be relevant to three-dimensional flows because the
three-dimensional Crow instability may dominate the evolution on a time scale that
precludes the two-dimensional acceleration. In fact, we know of no instances in which
acceleration of a three-dimensional vortex pair in ambient stratification has been
observed in laboratory experiments (e.g. Sarpkaya 1983) or numerical simulations
(e.g. Robins & Delisi 1997). For the three-dimensional solutions reported here, we
also find no acceleration of three-dimensional vortex pairs; however, we do find that
the decrease in separation distance persists from the two-dimensional case, and that
this influences the growth of the Crow instability (and the subsequent evolution).

Schilling et al. (1996) and Garten et al. (1998) also found that the flow of a
two-dimensional vortex pair in ambient stratification is susceptible to secondary
instabilities. The vortex head instability results in a growing oscillation of the vortex
pair propagation direction about the vertical, while the baroclinically generated wake
of the vortex pair is susceptible to jet instabilities. Whether or not these instability
processes are relevant to turbulent flows is also an open question at present, as well
as whether or not they can influence the evolution of a three-dimensional vortex pair
which undergoes the Crow instability.

Regardless of how the growth of the Crow instability is affected by environmental
conditions, if it reaches a large enough amplitude for portions of the two vortex tubes
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to come into close contact, then vortex reconnection will commence. A superficial
view of this process is that cross-diffusion viscously cancels anti-parallel vorticity
from the two tubes, and reconnected vorticity then connects one vortex tube to the
other. Typically, two long anti-parallel vortex tubes will be rearranged into a series
of vortex rings via this process.

Aside from its possible role in the evolution of aircraft trailing vortices, vortex
reconnection has been conjectured to play important roles in the mixing and pro-
duction of turbulence, helicity, and aerodynamic noise (Hussain 1986). Some work
on the general topic of vortex connection has been done in the context of colliding
vortex rings, including Fohl & Turner (1975), Ashurst & Meiron (1987), Oshima &
Izutsu (1988), Kida, Takaoka & Hussain (1989, 1991a), and Aref & Zawadzki (1991).
However, most work has been done in the context of anti-parallel vortex tubes un-
dergoing reconnection in a laminar, incompressible, unstratified, and unsheared fluid,
including Pumir & Kerr (1987), Melander & Hussain (1989), Buntine & Pullin (1989),
Kerr & Hussain (1989), Saffman (1990), Kida et al. (1991a), and Shelley, Meiron
& Orszag (1993), the last of which included a summary of models that predict the
Re dependence of the time scale for reconnection. We are unaware of any previous
attempts to characterize the Fr dependence of this time scale, and in fact, the only
work of which we are aware that explicitly discusses the reconnection of anti-parallel
vortex tubes in a different (e.g. stratified, sheared, and/or turbulent) background is
the compressible calculations of Virk, Hussain & Kerr (1995). We stress that Virk et
al. discussed a compressible effect which increases the reconnection time scale, while
we discuss a stratification effect which decreases the reconnection time scale (see § 4).

In a recent review (Kida & Takaoka 1994), the important differences between
scalar, vortex, and vorticity reconnections were discussed, as well as the need for more
precise definitions for vortices and eddies. Following those definitions, we will refer
to scalar and vortex reconnections, respectively, when the topology of iso-surfaces of
a passive scalar or the vorticity magnitude changes, and vorticity reconnection when
the topology of vorticity lines changes. Following Jeong & Hussain (1995), we use
volume renderings of negative values of λ2, the second eigenvalue of the symmetric
matrix S2 + Ω2, to identify and visualize the vortices. We show an overview of the
unstratified simulation with Re = 942 in figure 1. Unfortunately, because λ2 is based
on flow rotation, vortex sheets are not prominently displayed via this method, even
if their vorticity is large. Since sheets of baroclinically produced vorticity play an
important role in the evolution of the stratified cases, we use volume renderings of
both λ2 and |ω| to show an overview of the Fr = 2 case in figure 2 (see figures 12 and
13 for examples of cross-sectional cuts of the stratified flows).

The remainder of the paper is organized as follows: in § 2, we outline our nu-
merical model and our initial conditions. In § 3, we address the effects of ambient
stratification on the development of the Crow instability, while in § 4, we discuss the
reconnection phase of the evolution. In § 5, we estimate the critical Fr that separates
the different regimes of behaviour outlined in § 3 and § 4. In § 6, we summarize our
main conclusions.

2. Numerical model
2.1. Basic equations and numerical method

We use a numerical model based on the Boussinesq approximation to the three-
dimensional Navier–Stokes equations. The full density (ρ̃ = ρ̄ + ρ) and temperature
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(T̃ = T̄ + T ) are expanded in terms of horizontal mean (overbar) and perturbation
quantities.† The equation of state that relates the two fields is

ρ

ρ0

= −αT , (2.1)

where α is the thermal expansion coefficient and ρ0 is a reference value. The back-
ground temperature is T̄ = βz, and the buoyancy frequency is then N =

√
gαβ, where

g is the acceleration due to gravity.
A pseudo-spectral, streamfunction/vorticity, Galerkin method (e.g. Canuto et al.

1988) is used to solve the system of equations, where the field variables are represented
with Fourier polynomials of the form

A(x, y, z, t) =

Nx/2∑
l=−Nx/2

Ny/2∑
m=−Ny/2

Nz/2∑
n=−Nz/2

Âlmn(t)e
2πi(lx/Lx)e

2πi(my/Ly)e
2πi(nz/Lz), (2.2)

where Nx, Ny , and Nz are the number of collocation points in the x-, y-, and z-
directions, and Lx, Ly , and Lz are the domain lengths. Differentiation of a variable is
then accomplished with multiplication by a k-vector in Fourier space, and dealiasing
with the 2/3 rule is used in all spatial directions (Canuto et al. 1988).

Efficiency is gained by time-advancing only the vertical components of the velocity
and the vorticity fields. One non-dimensional form (the non-dimensionalization will
be discussed in the next section) of this set of equations is

∇ · v = 0, (2.3)

∂

∂t
∇2w = z · ∇× ∇× (ω × v) +

1

Fr2
∇2
⊥T +

2π

Re
∇4w, (2.4)

∂ωz

∂t
= −v · ∇ωz + ω · ∇w +

2π

Re
∇2ωz, (2.5)

∂

∂t
U⊥ = − ∂

∂z
〈wv⊥〉+

2π

Re

∂2

∂z2
U⊥, (2.6)

∂T

∂t
= −(v · ∇)(T̄ + T ) +

2π

RePr
∇2T , (2.7)

where v = (u, v, w) is the velocity, ω = ∇× v = (ωx, ωy, ωz) is the vorticity, ⊥ denotes
the projection onto the horizontal plane, and 〈 〉 denotes the horizontal average.

Although it is actually ∇2w that is time-advanced with (2.4), the spectral coefficients
of w are trivially found from the spectral coefficients of ∇2w through the relationship

ŵlmn = − 1

k2
[∇2w]lmn, (2.8)

where kx = 2πl/Lx, ky = 2πm/Ly , kz = 2πn/Lz , and k2 = k2
x + k2

y + k2
z (note that

ŵ000 = 0).
The other four components of the velocity and the vorticity fields must be known

at each time to advance the solution, and they are found from w and ωz through the
following method. A general velocity field (satisfying (2.3)) may be written in terms
of two streamfunctions (ψ and φ) and the mean horizontal velocity (U⊥(z)):

v = ∇× ψ + ∇× ∇× φ+U⊥(z), (2.9)

† The model also permits unstratified simulations for comparison to the stratified cases.
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where ψ = ψẑ and φ = φẑ. This expansion is inherently divergence-free and implicitly
satisfies the incompressibility constraint. It can be shown that w = −∇2⊥φ and
ωz = −∇2⊥ψ, and the spectral coefficients of ψ and φ are then found from the spectral
coefficients of w and ωz through the relationships

ψ̂lmn =
1

k2
x + k2

y

ω̂zlmn, (2.10)

φ̂lmn =
1

k2
x + k2

y

ŵlmn. (2.11)

It can further be shown that

u =
∂ψ

∂y
+

∂2φ

∂x∂z
+ u⊥(z), (2.12)

v = −∂ψ
∂x

+
∂2φ

∂y∂z
+ v⊥(z), (2.13)

and so the non-mean parts of u and v can be found from w and ωz (through ψ and
φ) at each time. The mean parts of u and v (U⊥) are time-advanced via (2.6). The
remaining components of the vorticity are then directly calculated from derivatives
of the velocity field, and solutions are obtained by time-advancing (2.4)–(2.7).

We use a hybrid implicit/explicit third-order Runge–Kutta scheme developed by
Spalart, Moser & Rogers (1991) to time-advance the variables. Diffusive and buoy-
ancy terms are handled implicitly in spectral space, while nonlinear terms are treated
explicitly in physical space, then projected to Fourier space using fast Fourier trans-
forms (FFTs); dealiasing with the 2/3 rule is used in all spatial directions. The
timestep δt is variable, selected in accord with the maximum velocity/grid-spacing
ratio U = max |u/δr| (u is one component of the flow velocity and δr the grid
spacing parallel to that velocity) and the Courant–Friedrichs–Lewy (CFL) condition,
δt = CFL/U . We use the value of CFL = 0.68 for the full, 3-level Runge–Kutta
timestep.

Resolution requirements for our solutions are time-dependent, increasing (or de-
creasing) by a factor of four or more during the flow evolution. Interpolation (or
deterpolation) of field variables allows frugality with finite numerical resources, and
is accomplished by expressing the field variables in Fourier space and adding zeros
for the coefficients of the new, higher wavenumber modes (or simply setting to zero
coefficients above the new highest wavenumber).

The boundary conditions in each direction may be chosen to be either periodic or
stress-free with zero normal velocity. In all of our cases, the boundary conditions are
periodic in the vertical direction and in the direction parallel to the axes of the vortex
tubes. The boundary conditions in the spanwise direction (i.e. perpendicular to the
axes of the vortex tubes) are stress-free, and the (left/right) symmetry of the flow is
taken advantage of through computing only half of the total solution (we note that
the potential for the vortex head instability and sinuous-mode wake instabilities is
thus lost).

With computational boundaries, these simulations differ from the ideal case of
infinite spatial extent. In particular, an infinite number of image vortices are present,
and they contribute to the velocity field of the primary vortex pair, changing it from
the infinite domain state. Although the differences may remain small throughout
the evolution of the flow, they may be important when comparisons are made to
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theoretical predictions, laboratory experiments, or other numerical simulations which
use different size computational domains.

2.2. Initial conditions and non-dimensionalizations

To model a pair of anti-parallel vortex tubes, we use Gaussian distributions of
vorticity, centred about axes which are initialized in a perturbed (though symmetric)
configuration. A general specification of the initial coordinates of the vortex tubes is
given by

y1(x) = y10 −
Nm∑
n=1

a(n) sin (2πnx/Lx + φ(n)) cos (Θ),

z1(x) = z10 +

Nm∑
n=1

a(n) sin (2πnx/Lx + φ(n)) sin (Θ),

y2(x) = y20 +

Nm∑
n=1

a(n) sin (2πnx/Lx + φ(n)) cos (Θ),

z2(x) = z20 +

Nm∑
n=1

a(n) sin (2πnx/Lx + φ(n)) sin (Θ),



(2.14)

where Nm is the number of symmetric perturbations of the vortex tubes, a(n) = a0n
−p

(for some p > 0) is the amplitude of each perturbation mode, φ(n) is the phase shift
for each perturbation mode, and Θ is the angle through which each perturbed vortex
is tilted from the horizontal. For all of the cases reported here, Nm = 1, a(1) = 0.05,
φ(1) = 0, and Θ = 48◦. The unperturbed positions of the two vortices are (y10, z10)
and (y20, z20); y20 − y10 = b0, the initial vortex core separation distance, and z20 = z10.

Since the positions of the vortex tubes are initially perturbed in this manner, the
initial distribution of ωx is x̂-dependent, and ωy and ωz are non-zero. Our specification
of the initial vorticity field† is

ωx(x, y, z, t = 0) = ω0(e
−ρ2

1/2σ
2 − e−ρ2

2/2σ
2

) cos (ζ),

ωy(x, y, z, t = 0) = −ω0(e
−ρ2

1/2σ
2

+ e−ρ2
2/2σ

2

) sin (ζ) cos (Θ),

ωz(x, y, z, t = 0) = ω0(e
−ρ2

1/2σ
2 − e−ρ2

2/2σ
2

) sin (ζ) sin (Θ),

 (2.15)

where

ρ2
1 = (y − y10(x))2 + (z − z10(x))2,

ρ2
2 = (y − y20(x))2 + (z − z20(x))2,

ζ =

Nm∑
n=1

na(n) cos (2πnx/Lx + φ(n)),


(2.16)

σ is a vortex core size, and ω0 is the peak magnitude of vorticity (all of our cases are
for descending vortex pairs, and so ω0 < 0). As mentioned in the previous section,
the symmetry of the flow may be used by not computing the entire solution, and the
initial conditions are modified appropriately.

All of our simulations are performed with a non-dimensional set of equations.
Length, velocity, and temperature are reported in units of b0, W0, and β, where W0

† This specification of the initial vorticity field only obeys ∇ ·ω = 0 to order σ2/b2
0. However, the

small errors (order 10−4) introduced by this approximation do not appear to significantly affect the
evolution.
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is the magnitude of the initial vertical induced velocity and β is the background
temperature gradient. Other quantities are measured in units resulting from combi-
nations of these three variables, e.g. time is reported in units of b0/W0. Important
combinations of these and other parameters form non-dimensional quantities which
we use to characterize our solutions. These include Fr, Re, and Pr (Prandtl number),
which are now defined.

The Froude number (or inverse stratification number) is defined as

Fr =
W0

Nb0

, (2.17)

where N is the buoyancy frequency of the background stratification. Hence, Fr is
the ratio of the buoyancy timescale to the vortex-pair advection timescale. In the
nonlinear regime (Fr > 1) the advective effect of each vortex on the other is greater
than buoyancy effects, while in the linear regime (Fr < 1) the opposite is true. The
labels linear and nonlinear refer to the nature of the underlying flow equations in
these regimes.

The Reynolds number,

Re = 2π
W0b0

ν
, (2.18)

is the ratio of the viscous timescale (b2
0/ν) to the advective timescale (b0/W0), where

ν is the coefficient of kinematic viscosity. The 2π factor is included here because in
the literature the Reynolds number is often defined in terms of the initial circulation,
Γ0 = 2πW0b0. The number of grid points used limits the value of Re that can be
attained numerically. In order to investigate the implications of the constraint for Re,
we have performed unstratified simulations at Re = 628, 942, and 1260.

The Prandtl number, Pr = ν/κ, is the ratio of the diffusive timescale (b2
0/κ) to the

viscous timescale (b2
0/ν). The value of Pr determines how quickly thermal gradients

diffuse relative to velocity gradients, and we have used Pr = 1 to prevent the numerical
resolution requirements of our solutions from escalating out of control.

For all of the simulations reported here, the vortex core size is σ/b0 = 0.0707; for
this choice, the vortices are small enough to be distinct entities but large enough to
be adequately resolved in the computations (see table 1). A solid core vortex with the
same peak magnitude of vorticity and the same total circulation would have a radius
rc = 0.1, and hence a Crow (1970) cutoff distance of d = 0.064.

To prevent significant interaction with the image vortices, the width of the compu-
tational domain Ly is made large compared to b0; specifically we choose Ly = 8b0 (or
4b0 for the half-domain) for the unstratified cases, and Ly = 16b0 for the stratified
cases. The height of the computational domain Lz must be large enough to prevent
the vortices from encountering image vorticity; we use Lz = 8b0 for the unstratified
cases, and Lz = 10.67b0 for the stratified cases. A taller domain is needed for the strat-
ified runs because of the rebounding motion of some of the fluid initially displaced
by the vortex tubes.

As discussed in Garten et al. (1998), we continue to lack a reliable method for
quantitatively determining the quality of numerical resolution of our solutions. We
therefore use the method of looking for Gibbs’ oscillations and/or numerical ringing
throughout the flow evolutions, and do not allow such ringing to reach visible
amplitudes (see e.g. figures 12 and 13).
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Flow parameters Domain lengths Spectral modes

Fr Re Pr Lx Ly/2 Lz Nx Ny Nz (σ/b0)Ny

∞ 628 1 8.6 4 8 128 128 256 2.3
∞ 942 1 8.6 4 8 256 192 384 3.4
∞ 942 1 8.6 8 8 256 384 384 3.4
∞ 1260 1 8.6 4 8 256 256 512 4.5
∞ 2200 1 8.6 4 8 128 128 256 2.3
∞ 3140 1 8.6 4 8 256 256 512 4.5
8 942 1 8.6 8 10.67 256 384 512 3.4
4 942 1 8.6 8 10.67 256 384 512 3.4
2 942 1 8.6 8 10.67 256 384 512 3.4
1 942 1 8.6 8 10.67 256 384 512 3.4

1/2 942 1 8.6 8 10.67 256 384 512 3.4

2 942–3140 1 8 10.67 384 512 3.4
2 6280 1 8 10.67 768 1024 6.8
1 942 1 8 10.67 384 512 3.4

0.725–0.8 9420 1 8 10.67 768 1024 6.8
0.65–0.725 942 7 8 10.67 768 1024 6.8
0.6–0.7 942 1 8 10.67 384 512 3.4

1/2 942 1 8 10.67 384 512 3.4

Table 1. The values of the flow parameters, computational domain lengths, and maximum numerical
resolutions of the numerical simulations we describe here. Note that the product (σ/b0)Ny yields
the number of grid points per core radius (σ), and that the Re = 2200 and Re = 3140 cases were
computed with the filtering method described in § 2.3. In all cases, σ/b0 = 0.0707.

2.3. Comments regarding our large grid sizes

We place great importance on completely resolving our solutions for all time; however,
strong constraints then exist on what aspects of the general problem we can hope
to explore. As can be inferred from the number of spectral modes used in these
simulations (see table 1), it is not practical for us to attempt studies incorporating
significantly longer vortex tubes (and thereby allowing the dominant wavelength of the
instability to evolve) or larger Re. However, some investigators have utilized numerical
filtering techniques (e.g. Robins & Delisi 1996, 1997), hyperviscosity regularization
(e.g. Boratav, Pelz & Zabusky 1992), and subgrid scale methods (e.g. Corjon et al.
1996) to overcome these obstacles in related studies of three-dimensional vortices
interacting under different environmental conditions.

We have made comparisons with our own code between our Re = 1260 run and
under-resolved (the resolution was decreased by a factor of 4 in each spatial direction)
and filtered (the highest 1/2 wavenumbers were zeroed every 30 time steps for the
smaller-resolution run) solutions. We find that the time evolution of quantities such as
the amplitude of the Crow instability, the fraction of circulation that has reconnected,
and the spatial positions of the vortex tubes and the subsequently formed vortex ring
change by only a few percent or less. Therefore, one possible view is that this work
thus helps validate those smaller resolution approaches (at least for Re = 1260, and
perhaps for larger Re) in situations where there is interest in these qualitative aspects
of the flow.

However, when we employed these smaller-resolution techniques, a significant
amount of numerical ringing built up over time in our solutions. The details of
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Figure 3. The time evolution of the instability amplitude for the unstratified cases with Re = 628
(dotted), Re = 942 (short-dashed), and Re = 1260 (solid), compared to the theoretical prediction of
Crow’s model (long-dashed).

the vortex reconnection process as well as aspects of the late time evolution also hold
interest for us, and so in this and future studies we continue to use large maximum
grid sizes in order to maintain numerical accuracy as fully as possible throughout the
evolution.

3. The Crow instability in a viscous, stratified fluid
We begin our discussion of the results with an examination of the Crow instability

phase of the evolutions. For our vortex core size (slightly different from the classical
Crow value – a small error not discovered until too late), Crow’s inviscid theory
predicts that the fastest growing mode of instability is symmetric, has a wavelength
of 8.5b0, a growth period of T = 1.21, and evolves on each tube in a plane tilted
at 47.5◦ from the horizontal. Although the perturbations on our vortex tubes are
initialized at an angle of 48◦ from the horizontal, and with an imposed wavelength
of 8.6b0 (the classical Crow values), the predicted growth period is still T = 1.21 (to
three significant digits).

3.1. The Crow instability in a viscous fluid

As we are interested in the effects of environmental factors, like ambient stratification,
on the growth of the Crow instability, we first consider how it evolves in the absence
of external effects. We show the time evolution of the instability amplitude for our
three unstratified cases in figure 3. These results show clearly that the agreement
with Crow’s model improves for larger Re. Our explanation for the slower growth of
the instability for smaller Re begins with the fact that the vortex core size increases
noticeably during the Crow instability phase. As discussed in Garten et al. (1998), to
a good approximation, the core size of the vortices increases as

σ(t) =

[
σ(0)2 +

4π

Re
t

]1/2

. (3.1)
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Figure 4. (a) The time evolution of σ for Re = 628 (dotted), Re = 942 (short-dashed), Re = 1260
(solid), Re = 3140 (dot-dashed), and Re = 6280 (long-dashed). Note that σ(0) = 0.0707. (b) The
time evolution of the wavelength of the fastest growing linear mode for the same values of Re as
in (a). (c) The time evolution of the amplitude of the linear modes, for Re = 942, with wavelengths
λ = 8.0b0 (dotted), λ = 7.5b0 (short-dashed), λ = 7.0b0 (solid), λ = 6.5b0 (dot-dashed), and λ = 6.0b0

(long-dashed). The different modes are initialized with the same amplitude, and the amplitudes are
normalized by the time-dependent amplitude of the linear mode with λ = 8.6b0. (d) Same as (c),
except that the initial amplitude of the modes decreases as λ5/3.

Examples of how quickly σ grows as given by (3.1) are shown in figure 4(a). Note
that for our particular simulations, significant vortex reconnection begins to occur by
t ' 3.5 (see § 4.1).

The general implications of an evolving vortex core size for the Crow instability
are not necessarily clear. One possibility is to take the naive approach that the growth
rates of all the linear modes depend straightforwardly on the vortex core size at
each instant in time. However, the wavelength of the fastest growing mode (as given
by Crow’s inviscid model) would then be time dependent, as shown in figure 4(b).
In general, if initial perturbations are sufficiently weak for one mode to not grow
quickly to a finite (nonlinear) amplitude†, this shift could result in the emergence of
an instability with a different wavelength than expected from the initial state.

To explore such possible shifts, we use our naive assumption that a growth rate for
a mode at each instant in time can be found directly from the core size at each instant
in time to calculate the amplitudes of selected linear modes that are all evolving

† The most general problem is complicated further by this unknown timescale, while our partic-
ular simulations are initialized with finite amplitudes.
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at Re = 942. We normalize the amplitudes by the time-dependent amplitude of the
mode with λ = 8.6b0 (so that some mode amplitudes appear to decrease initially
but merely increase at a slower rate), and their time evolutions are shown in figures
4(c) and 4(d). In the first case, all the modes are initialized with identical amplitudes,
and, at this Re, smaller-wavelength modes actually gain greater amplitudes than
the default mode. Depending on how long it takes for one mode to attain a finite
(nonlinear) amplitude (for these purposes, the e-folding timescale for all of these
modes is O(1)), it is difficult to predict what dominant wavelength would emerge.
In the second case, however, the modes are initialized with wavelength-dependent
amplitudes. Unfortunately, any particular choice for the functional dependence of
the initial amplitude is difficult if not impossible to justify (Robins 1998, Spalart
1998, private communications). We believe that larger wavelengths will in general be
excited initially with larger amplitudes, and use the particular functional dependence
λ5/3 to illustrate the possible consequences when this general assumption is true. In
particular, the mode with λ = 8.6b0 now retains the largest amplitude for all time.

Although these points raise interesting questions about the evolution of the Crow
instability in general small-Re flows (Robins & Delisi 1997 have reported multiple
wavelength studies in which they find the dominant wavelength indeed shifts with
time), the implications for our particular simulations appear to be more straightfor-
ward. We initialize a finite- (nonlinear) amplitude perturbation on our vortex tubes,
and there is also only a discrete spectral range of modes available to the solution
(the next closest mode is the one with λ = 4.3b0). Therefore, the solution cannot
realistically shift to a different wavelength. However, we can expect that the growth
rate of the instability slows as the vortex core size increases (with our assumptions,
the growth rate at any time will depend on the vortex core size at that moment in
time).

We have calculated the expected growth of the instability (i.e. the time evolution of
the amplitude as well as the mean inclination angle of the vortex tube displacements)
for our three Re from both points of view that it is (dotted lines) and is not (long-
dashed lines) affected by the core size increase in the way just outlined, and the results
are shown in figures 5(a) and 5(b). Note that the difference between these predictions
decreases for larger Re, because the core size increases less rapidly for larger Re.
Because the vortex tubes distort from their initial sinusoidal shape as the instability
evolves†, it is difficult to decide how to measure the actual amplitude of the instability.
We first determine the locations (the (y, z)-positions) of the centroids of the vortex
tubes at each x-position, and project all of these points onto one plane to determine
the mean inclination angle of the vortex tube displacements. The time evolution of
this actual mean inclination angle is shown in figure 5(a) (triangle symbols), and in
each case it increases consistently with the prediction of the extended model.

We then measure the vortex tube displacements at the positions of furthest sep-
aration (star symbol) and closest approach (diamond symbol) of the vortex tubes
and project them onto the plane of mean inclination to make two measurements
of the instability amplitude (the average of these measurements is used in figure 3),
and we show these measurements in figure 5(b). Figure 5(c) shows displacements
perpendicular to the mean inclination plane (multiplied by 5 for display purposes),
and these measurements indicate that the distortion increases slightly for larger Re.

† As mentioned by Moore (1972), the vertical advection of the vortex tubes depends on their
separation distance; once this distance significantly varies along the tubes, the vertical propagation
becomes non-uniform, and shape distortion results.
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original (dashed) and modified (dotted) Crow models are shown.
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We note that although all of these measurements are shown up to t = 4, significant
vortex reconnection commences by t ' 3.5 (see § 4.1). The overall agreement with the
theory extension is worst for the Re = 628 case, but improves for larger Re. We note
that most of the distortion results from a variation in the vertical propagation of the
vortex tubes caused by the variation in separation distance along the tubes (i.e. the
tubes are elongated in the vertical direction); therefore, the instability amplitude is
henceforth calculated by projecting the horizontal displacements only onto the plane
of mean inclination.

3.2. The Crow instability in a stratified fluid

We now consider how ambient stratification affects the development of the Crow
instability. A simple timescale analysis leads us to expect that this part of the
evolution should not change for large Fr (recall that the unstratified limit corresponds
to Fr→∞). Effects due to the stratification should only occur over timescales on the
order of the buoyancy period, and in the non-dimensional time units the buoyancy
period is 2π/N = 2πFr. Because of the large amplitude we use to initialize the
perturbations on the vortex tubes, the instability reaches a large enough amplitude
to result in significant vortex reconnection by about t ' 3.5 (see § 4.2); therefore, we
should not expect the Crow instability phase of the evolution to change unless Fr is
O(1) or less.

The time evolution of the instability amplitude, as measured by the method just
discussed, is shown in figure 6 for several values of Fr. These measurements are
compared to the prediction of the extended theory discussed in the previous section
(dotted lines), where in all of these cases Re = 942. As expected, the growth of the
instability for the Fr > 2 cases is nearly identical to the unstratified (Fr → ∞) case.
However, the instability grows noticeably faster for the Fr = 1 case, and noticeably
slower for the Fr = 1/2 case. We note that the instability reaches an amplitude
sufficiently large for the Fr = 1 case that the two instability amplitude estimates
diverge. This is because the amplitude at the position of closest approach cannot
exceed b/2 divided by the cosine of the inclination angle. Therefore, after t ' 3, the
amplitude inferred at the position of furthest separation is much more meaningful
for the Fr = 1 case.

In measuring the instability amplitude for these stratified cases, it is important to
take into account that the average horizontal positions of the vortex tubes can be
time dependent. Therefore, the vortex tube displacements must be measured with
respect to the time-evolving average positions. The results of numerous investigations
of the evolution of two-dimensional vortex pairs in a stratified fluid via theory (Scorer
& Davenport 1970; Crow 1974) and laminar numerical simulations (Spalart 1996;
Schilling et al. 1996; Garten 1997; Garten et al. 1998)†, provide explanations for
changes in the average separation distance of these three-dimensional vortex tubes
(because of the flow symmetries, the average separation distance yields straight-
forwardly the average horizontal position of each vortex tube). Horizontal density
gradients result from the downwards transport of relatively lighter fluid by the vor-
tices; these gradients constitute a baroclinic source that produces vorticity behind

† We note that results of laboratory experiments (e.g. Sarpkaya 1983) and field experiments
involving three-dimensional vortex pairs in stratified fluids are sometimes used to dispute the
conclusions of these other works. However, we are not aware of any published experimental
results that include measurements of the average horizontal positions (or, equivalently, the average
separation distance) of three-dimensional vortex tubes in stratification, and so we have no basis for
comparison on this point.
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Figure 6. The time evolution of the amplitude of the Crow instability as given by the horizontal
displacements of the vortex tubes from their average positions for the Re = 942 cases with (a) Fr = 4,
(b) Fr = 2, (c) Fr = 1, and (d) Fr = 1/2. The displacements are measured at the positions of closest
approach (diamond symbol) and furthest separation (star symbol) of the vortex tubes, and some
data is missing for the Fr = 2 case due to a supercomputer storage glitch. These measurements are
compared to the prediction of the modified theory (dotted lines), where the growth rate decreases as
the the core size increases, and, in the Fr = 1 and 1/2 cases, to the time-rescaled theory (long-dashed
lines) and the fully rescaled theory (solid lines). For these latter two cases, in (e) and (f) the time
evolution of the average separation distance of the three-dimensional vortex tubes (cross symbols)
is compared to the separation distance of a two-dimensional vortex pair at the same Fr (dotted
lines).

and to the sides of the original vortices (as discussed in greater detail in § 4.2). For
Fr > 1, these countersign regions of secondary vorticity then advect the primary
vortices towards one another, while for Fr 6 1/2, they have a qualitatively different
distribution and advect the primary vortices away from one another (see Garten et
al. 1998). The aforementioned simulations of two-dimensional vortex pairs have also
shown that there is a time lag before this horizontal motion commences. For our
three-dimensional cases with Fr > 4, the average separation distance of the vortex
tubes decreases by less than 5%, while for our cases with Fr 6 2, more rapid changes
transpire.

The time evolution of the average separation distance, 〈b〉, of the vortex tubes is
shown in figure 6(e, f) for the Fr = 1 and Fr = 1/2 cases (cross symbols). These
results are compared to the results of simulations of two-dimensional vortex pairs at
the same Fr (dotted lines). Although the three-dimensional dynamics result in some
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quantitative differences, the evolution of the three-dimensional average separation
distance is in good agreement with the evolution of the two-dimensional separation
distance. This suggests that if our simulations were initialized with smaller-amplitude
perturbations (so that the Crow instability phase would have a longer duration), then
the average horizontal movement of the vortex tubes during the three-dimensional
Crow instability phase, and the subsequent effect on the growth of the Crow instability,
would be greater for all Fr.

In view of the success of our naive approach to understanding the growth of the
Crow instability in a viscous fluid, we now make a similar attempt to understand the
growth of the Crow instability in a stratified fluid. We propose that as 〈b〉 evolves,
the rate of the instability evolution also evolves. Recalling that time is initially scaled
by b0/W0, and that W0 ∼ 1/b0, we propose that the time scaling of the evolution
evolves as δt ' 1/〈b〉2. We then include this ‘acceleration’ factor (a deceleration for
Fr 6 1/2 where 〈b〉 increases) in our modified Crow model to predict the growth
of the instability for our Fr ∼ O(1) cases, and these new predictions are shown in
figure 6(c, d) (long-dashed lines). The agreement with this extension is generally good;
however, as pointed out by one of the anonymous referees, our theory extension
does not include the lengthscale shifts (the non-dimensional wavelength: λ ∼ 1/〈b〉,
and the vortex core cutoff distance: d/〈b〉) that must also occur as 〈b〉 evolves.
Predictions including this effect are also shown in figure 6(c, d) (solid lines), and they
are inadequate to explain the observations, especially in the Fr = 1 case. A clear and
precise explanation for this difficulty continues to elude us. We note that Robins &
Delisi (1996) have also reported that the Crow instability proceeds more rapidly in
ambient stratification (for Fr > 1).

One effect that we neglect is the possible instability-type interactions amongst the
original vortices and the regions of baroclinic vorticity. Consideration of the non-
uniform distribution of baroclinic vorticity along the vortex tubes (discussed more
fully in § 4.2) may also provide additional insights. For the Fr > 1 cases (see e.g. figures
12 and 13), relative to the decrease in 〈b〉, the vortex tubes have a larger (smaller)
effective Fr where they are closer together (further apart), and the distribution of
baroclinic vorticity is such that the vortex tubes are advected even closer together
(further apart). Hence, faster growth of the instability amplitude would ensue. For the
Fr 6 1/2 cases, the strength of the baroclinic regions of vorticity increases so rapidly
that each primary vortex tube falls under the influence of its neighbouring baroclinic
vorticity much more than the other primary vortex.

4. The vortex reconnection phase
We now discuss the vortex reconnection phase of the evolutions. We present both

unstratified and stratified results to set clearly a consistent context in which to discuss
effects due to stratification. Without stratification, time-preserved symmetries allow
the vorticity equations to be expressed at the centreplane between the two vortices
(i.e. the x, z-plane at y = 0) as follows:

ωx = ωz = 0, (4.1)

∂ωy

∂t
=

2π

Re

∂2ωy

∂y2
+ ωy

∂v

∂y
−
(
u
∂ωy

∂x
+ w

∂ωy

∂z

)
+

2π

Re

(
∂2ωy

∂x2
+
∂2ωy

∂z2

)
, (4.2)

where the terms of (4.2) are arranged for the purpose of the following discussion.
Initially, ωy = 0 everywhere on the centreplane, and all of the terms on the right of
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(4.2) are zero. However, when the instability reaches a sufficiently large amplitude,
the first term of (4.2) becomes non-zero, and reconnection can be said to commence.
Once this occurs (i.e. ωy is non-zero on the centreplane), all of the terms of (4.2) can
be non-zero, but only the first term contributes a net change in circulation (see figure
9, below). It constitutes both a source of spanwise (i.e. ŷ-oriented) vorticity that arises
from the linking and realignment of the unannihilated parts of vortex lines whose
middle portions are annihilated by viscous cross-diffusion (Melander & Hussain 1989),
as well as a sink of spanwise vorticity that arises from viscous spreading. The second
term of (4.2) is a stretching term, the next two terms represent advection of spanwise
vorticity within the centreplane, and the final two terms represent viscous spreading
of spanwise vorticity within the centreplane. The volumes of vorticity that connect
the two vortex tubes through the centreplane have been called bridges (Melander &
Hussain 1989), and the rate at which the bridges form is controlled by (4.2).

In addition to integrating ωy and/or ∂ωy/∂t over half of the centreplane (two
vortex bridges form where the vortex tubes approach most closely, and they possess
anti-symmetry about that point for all time), the rate of vortex reconnection can also
be quantified via the following method. The circulation of the positive vortex tube is†

Γ (x) =

∫ Ly/2

0

∫ Lz

0

ωx(x, y, z)dy dz. (4.3)

In the unstratified case, Γ (x) decreases only via cross-diffusion at the centreplane:

∂Γ (x)

∂t
= − 2π

Re

∫ Lz

0

∂ωx

∂y

∣∣∣∣
(x,0,z)

dz. (4.4)

Although the spatial distribution (on the centreplane) of (2π/Re) (∂ωx/∂y) indicates
where annihilation via viscous cross-diffusion occurs (e.g. figure 9), only the spatial
distribution of the source part of the first term of (4.2) indicates where reconnection
actually occurs (see figure 9). We believe it less important to consider the distribution
of cross-diffusion (which occurs along some finite length of the vortex tubes), shown
in the middle column of figure 9, than the distribution of ‘actual’ reconnection, as
shown via the overlaid shaded contours in figure 9. Without this distinction, cross-
diffusion that occurs everywhere along the tubes would be thought of as reconnecting
the entire length of the tubes.

We define Γf and Γc as the total circulation of the positive vortex tube at the
positions of furthest separation and closest approach of the vortex tubes, respectively.
Henceforth, the (y, z)-planes at these x locations are referred to as plane f and plane
c, respectively. Γf is the maximum circulation of the positive vortex tube for all time,
and we therefore think of a viscously driven decrease in Γf as a decrease in the total
circulation (i.e. if Γf decreases, then cross-diffusion has occurred everywhere along
the vortex tubes). The vast majority of the viscously driven decrease in Γc occurs
simultaneously with an increase in spanwise circulation (via the first term of (4.2)).
This is a simple view of the process of vortex reconnection which ignores the detailed
geometries associated with the vorticity reconnection of particular vortex lines – see,
e.g. figure 3 of Kida & Takaoka (1994). From these two quantities, we construct a
simple measure for the minimum circulation‡ of the positive vortex bridge, which we

† For the stratified cases discussed in § 4.2, the positive vortex tube is quickly surrounded by
baroclinically produced negative vorticity; therefore, the following area integral is taken only over
the region bounded by the zero vorticity line between the primary and background vorticity.
‡ Although it is difficult to define where the vortex tubes end and where the vortex bridges between
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Figure 7. The time evolution of the undisturbed circulation of each vortex tube (Γf/Γ0, a) and the
fraction of circulation that is reconnected into a vortex ring (Γr/Γf, b) for the unstratified cases
with Re = 628 (dotted), Re = 942 (dashed), and Re = 1260 (solid).

define as Γr: Γr = Γf − Γc. Although we have confirmed that this measure coincides
with a direct measurement of Γr in the unstratified cases, we use this indirect method
as it is more convenient in complex environments where additional sources (e.g.
baroclinic) of spanwise vorticity exist. Of course, Γr = Γf − Γc no longer strictly
holds in such cases, but the quantity 1.0 − Γc/Γf will still indicate the completeness
of reconnection.

4.1. Vortex reconnection in an unstratified fluid

We first consider the vortex reconnection phase of the evolution without any external
effects. The time evolution of Γf , normalized by the initial circulation, and the fraction
Γr/Γf are shown in figure 7 for our three different Re cases. As seen in the time
evolution of Γf , there is a small but noticeable total loss of circulation for these
tractable values of Re. This is a consequence of the increase in size of the vortex
cores (through viscous diffusion). Some anti-parallel vorticity cancels where the vortex
tubes are furthest apart, even though the growth of the Crow instability results in
migration of the vortex core centres away from one another (and the centreplane).
As discussed in § 3.1, a larger Re results in slower growth for the vortex core size
(see figure 8 and figure 10, and in more rapid growth of the instability amplitude
(see figure 3). Both of these effects reduce the vorticity gradients at the centreplane
where the vortex tubes are furthest apart, and thereby reduce the loss in Γf . For
increasing Re, the percentage of the original circulation that is lost by t = 8 in these
three simulations is 2.8%, 0.3%, and 0.1%, respectively. In the light of the results
summarized in figure 11, it is important to note how very little total circulation is lost
in the absence of external effects.

Now consider the time evolution of Γr/Γf . Initially, the vortex reconnection pro-

them begin, if the vortex bridges are thought of as three-dimensional volumes and not as merely
the two-dimensional regions of spanwise vorticity in the centreplane, then the minimum (maximum)
circulation of the positive (negative) vortex bridge is the circulation of the two-dimensional region
of positive (negative) vorticity.
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Figure 8. Contours of vorticity in planes f (a) c (b) of the vortex tubes for the cases with Re = 628
(top) and Re = 1260 (bottom) at the time t = 2.5. Contour levels at ±10,±20,±30, etc. show
the distribution of high-magnitude vorticity, while additional contour levels at ±1,±2,±3,±4,±5
illustrate the distribution of low-magnitude vorticity. All regions enclosed by negative contours
are shaded, and lines have been drawn to show the positions of the vortex tube centres for the
Re = 1260 case.

ceeds more rapidly for smaller Re. Even though the instability growth is slower (see
figure 3), and so the centres of the closest portions of the vortex tubes are not as close
to the centreplane (see figures 8–10), viscously driven expansion of the vortex cores
is faster, and so more anti-parallel vorticity is near the centreplane at early times (i.e.
through t ' 3). Therefore, the gradients of vorticity at the centreplane are initially
larger, and their products with 1/Re (i.e. the first term of (4.2) and (4.4)) are larger
still.

Eventually, however, the faster instability growth for larger Re begins to accelerate
the vortex reconnection. The centres of the closest portions of the vortex tubes move
closer to the centreplane, and the faster buildup of vorticity then steepens the gradients
of vorticity at the centreplane. Even though Re is larger, so that cross-diffusion might
be expected to occur more slowly, it happens more rapidly because the vorticity
gradients become much larger. As judged from the crosshairs in figure 9 (not all
shown), at t = 3.5, the vorticity gradient in plane c for the Re = 1260 case is roughly
5 and 1.8 times as large as for the Re = 628 and Re = 942 cases, respectively.

As observed and discussed in numerous numerical investigations of vortex recon-
nection (including Pumir & Kerr 1987; Melander & Hussain 1989; Buntine & Pullin
1989; Kerr & Hussain 1989; Kida et al. 1991a, b; Shelley et al. 1993; and Virk et al.
1995), a point is reached at which anti-parallel vorticity builds up near the centreplane
more quickly than it can be eliminated via cross-diffusion. As a result, the vortex cores
deform into a ‘head–tail’ distribution (Kida et al. 1991b). Vortex stretching increases
the maximum value of vorticity and narrows the vortex cores (via the second to
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Figure 11. The time evolution of the undisturbed circulation of each vortex tube (Γf/Γ0, a) and
the fraction of circulation that is reconnected into a vortex ring (Γr/Γf, b) for the Re = 942 cases
with Fr = ∞ (dotted), Fr = 8 (short-dashed), Fr = 4 (solid), Fr = 2 (dot-dashed), and Fr = 1
(long-dashed).

fourth terms of (4.2)) at the same time that the limit on cross-diffusion elongates the
vortex cores in the vertical direction (see, e.g. Melander & Hussain 1989). The early
stages of this deformation can be seen in figure 8, but it becomes more apparent at
the later times shown in figure 9 and figure 10.

The apparent convergence of the instability growth towards the classical Crow
prediction (see figure 3), coupled with the head–tail deformation of the vortex tubes,
may suggest that a vortex reconnection timescale (tR) should have straightforward
dependence on or even become independent of Re in the limit of large Re. The rate of
reconnection is governed by the integral over the centreplane of the products of 1/Re
with vorticity gradients at the centreplane as shown by (4.2) and (4.4). It is possible
that the increase in deformation with increasing Re (see figure 9, and also Kida et al.
1991b) could increase the vorticity gradients over a larger area in such a way that the
time dependence of the area integral would possess a straightforward dependence on
Re. How tR depends on both Re and Fr is discussed more fully in § 4.3.

We next consider why, as can be observed from figures 1 and 7, the vortex tubes
do not actually attain complete reconnection. This is an extremely important issue
to understand for (at least) two reasons: the better we understand what process(es)
prevents complete reconnection within the Re range we consider, the better we can
predict confidently that reconnection would be incomplete for larger Re than we
have accessed, and also, the better we can test and predict how external effects
(e.g. stratification) may interfere with this process. We now summarize Melander
& Hussain’s (1989) conceptual reconnection model, and follow in § 4.4 with specific
comparisons to our results. Melander & Hussain called the parts of the vortex
tubes which do not reconnect ‘threads’, and argued that their later time evolution is
controlled largely by the vortex bridges. The bridges initially possess a curved shape
and so move away from one another under self-induction (see their figure 2), while
the flow they induce in the centreplane decreases the curvature of the threads. The
curvature of the threads is important because (when the threads curve towards one
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another at their point of closest approach) it leads to self-induction of each thread
closer to the centreplane†, subsequently larger vorticity gradients at the centreplane,
and thus more rapid reconnection. According to their results, the curvature of the
threads eventually reverses, and self-induction then leads to an increase in thread
separation, and thus to a near halt in further reconnection. Melander & Hussain also
note that the flow induced by the bridges stretches the threads; this effect increases
vorticity gradients at the centreplane, and so the reconnection proceeds at a rate
slightly faster than if the curvature of the threads were the sole concern.

Our interpretation of Melander & Hussain’s conceptual model is that curvature
reversal of the threads by the bridge flow field is a process which prevents complete
reconnection. However, we believe it may not be the only such process. In support
of this belief, we note that in our simulations, the threads begin to move apart from
one another (see figure 20a) even though their curvature never reverses (see figure
19a). This is a very complex and potentially controversial point, and we discuss our
interpretation in great detail in § 4.4.

To conclude our discussion of the vortex reconnection phase for the unstratified
cases, we consider Melander & Hussain’s comment that the threads could eventually
undergo a secondary instability and reconnection process themselves as part of a
cascade mechanism (involving recursive reconnection events of thread remnants) to
smaller scales. In our Re = 942 and Re = 1260 cases, a point is reached at which
the thread separation at plane c is no longer the minimum thread separation (see
the definition of κy in § 4.4 and its reversal in sign in figure 19b). This could be
because the process which leads to thread separation decreases in importance away
from plane c, but a detailed analysis of this point lies beyond our present means.
These new perturbations lead to what could be called secondary reconnection events,
centred at two positions along the threads (symmetric with respect to plane c).

We believe that our limited range of Re prevents us from observing this secondary
reconnection in all its potential splendour. Even though the Re = 942 case was
extended to t = 12 (past which the solution is impacted intolerably by the compu-
tational domain boundaries), the secondary reconnection only reaches an amplitude
of roughly 4%. We believe that the secondary reconnection plateaus by t = 8 for
the Re = 1260 case at roughly 12%, but computational expense prevents us from
computing further. We can, however, augment these results with two larger Re runs
(also used in § 4.3) which utilize the filtering technique described in § 2.3. Insofar as
we believe these results, they indicate that secondary reconnection plateaus at roughly
30% and 50% by roughly t = 7 and t = 6 for Re = 2200 and Re = 3140, respectively.
These solutions also suggest that the positions of secondary reconnection are closer
to the bridge locations (and thus further away from the first reconnection position)
for larger Re. However, the poor quality of these solutions prevents us from drawing
too many inferences, and we believe they should be used to guide, not replace, future
direct simulations with larger Re.

4.2. Vortex reconnection in a stratified fluid

We now consider how ambient stratification affects the vortex reconnection phase of
the evolution. The timescale analysis in § 3.2 suggests the evolution should not change
for large Fr. However, the vortex reconnection phase should be affected more than

† Only in the case that the threads curve towards their point of closest approach but possess
constant horizontal positions would the self-induction be directly towards the centreplane.
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the Crow instability phase for the same Fr because its duration is roughly twice as
long.

Using the same definitions as before, the time evolutions of Γf/Γ0 and Γr/Γf are
shown in figure 11 for some† of the same Fr cases discussed in § 3.2 . The sharp
decrease in Γf for these stratified cases, when there is virtually no change for the
unstratified (Fr → ∞) case, is quite intriguing. The importance of this issue lies in
whether or not it supports a PD view of the evolution (Spalart 1998), in which it could
be assumed that the circulation gradually changes in some predictable way. This is
not the case, as we have determined that the loss in circulation arises from viscous
interaction between the primary vortices and baroclinically produced vorticity, and
this loss would not be as rapid for larger Re. We now elaborate more fully these
points.

We focus our attention on the Fr = 2 and Fr = 1 cases. Contours of the density in
planes f and c for the Fr = 1 case are shown in figure 12. These images illustrate the
resemblances to the flows of two-dimensional vortex pairs in ambient stratification
(see, e.g. Spalart 1996; Garten 1997; and Garten et al. 1998). Apart from the diffusive
effects in (2.7), the density is a conserved scalar of the flow, and its contours provide
a sense of the flow’s history. In particular, they show that relatively lighter fluid has
been entrained by the vortex tubes and carried downwards, and that the distribution
is not uniform along the vortex tubes. By t = 2.5, the region of fluid carried with the
vortex tubes is internally well mixed, but its boundaries have sharp gradients which
can cause numerical noise to appear if the resolution is not increased sufficiently.
At later times (not shown here), fluid initially displaced downwards rebounds back
upwards due to buoyancy, and this happens more quickly for smaller Fr.

The torque of the buoyancy force acting on fluid having a horizontal density
gradient creates vorticity through the baroclinic production terms given by

∂ωx

∂t
= − 1

Fr2

∂T

∂y
, (4.5)

∂ωy

∂t
=

1

Fr2

∂T

∂x
. (4.6)

From the perspective of vorticity dynamics, these terms contain all buoyancy effects,
and so the subsequent effects due to baroclinically produced vorticity may alternatively
be viewed as being due to buoyancy. Due to the flow’s symmetries, only (4.5)
contributes in planes f and c, while in general, vorticity is produced with both x̂ and
ŷ components (presumably, the ratio of the components is such that the regions of
baroclinically produced vorticity are oriented roughly parallel to the primary vortex
tubes).

Contours of the x̂ component of the baroclinic source of vorticity are also shown in
figure 12. Since the distribution of density gradients is not uniform along the vortex
tubes, neither is the baroclinic source. The magnitude of the baroclinic source for the
Fr = 1 case is larger than for larger Fr. Even though the density gradients are roughly
the same (at t = 2.5), the source behaves as 1/Fr2, and so its magnitude is larger for
smaller Fr. Though it is difficult to see from the contours shown, the magnitude of
the baroclinic source is also larger where the separation distance of the vortex tubes
is smaller. This results from the more rapid descent of the vortex tubes where their

† In the Fr = 1/2 case, the amplitude of the Crow instability does not become large enough to
initiate vortex reconnection. Therefore, when we discuss Fr dependences of the vortex reconnection
in our solutions, we will implicitly mean Fr > 1.
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Figure 12. Contours of the density (top), the baroclinic source of vorticity (middle), and the
vorticity (bottom) in planes f (a) and c (b) of the vortex tubes for the Fr = 1 case at t = 2.5. Density
contours are at intervals of 0.15, while contours of the baroclinic source and the vorticity are shown
at ±1,±2,±3,±4,±5,±10,±20,±30, etc. Regions enclosed by negative contours are shaded, and
one of the density contours has been drawn over the baroclinic source.

separation distance is smaller, and the subsequent larger density gradient between the
background fluid and the fluid carried with the vortex tubes.

Contours of vorticity are also shown in figure 12 and, for the Fr = 2 case, in figure
13. Since the baroclinic source is not uniform along the vortex tubes, neither is the
distribution of the secondary, baroclinically produced vorticity, which concentrates
into sheets to the side of and just behind the primary vortices. As discussed in § 3.2,
these secondary regions of countersign vorticity advect the primary vortices towards
one another, and decrease their average separation distance (e.g. figure 6). Although
this decrease results in the acceleration of a two-dimensional vortex pair (for large
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Figure 13. As in figure 12 (bottom row) but for the Fr = 2 case.

enough Re), it does not lead to an acceleration of these three-dimensional vortex pairs.
The acceleration is apparently prevented by the continuous loss in total (and average)
circulation of the vortex tubes, though the topological changes (e.g. Γc decreases)
might also prevent the acceleration even if Γf were preserved.

Due to the symmetries of the flow, the continuous loss in Γf (compared to the un-
stratified case) must result from net cancellation with the oppositely signed baroclinic
vorticity and/or enhanced cross-diffusion of the primary vortices caused by their
advection towards the centreplane by the baroclinic vorticity. Consider the contours
of ωx in the spanwise plane f shown in figure 14 for the Fr = 2 case. In this case, all
regions of negative vorticity have been shaded so that the boundaries of zero vorticity
are visible. Until t ' 3.5, the primary vortices are not in contact with one another in
plane f, and so there is zero cross-diffusion between them in plane f. After t ' 3.5,
some cross-diffusion occurs (e.g. between z ' −3.75 and z ' −2.5 at t = 4.5), but the
contours of vorticity suggest visually that the viscous cancellation between each pri-
mary vortex and its neighbouring baroclinic vorticity is a much larger contributor to
∂Γf/∂t. For a quantitative comparison, it can be shown that the instantaneous contri-
bution to ∂Γf/∂t by cross-diffusion can be calculated by integrating −(2π/Re)∂ωx/∂y
over the portion of the centreline where the primary vortices are in direct contact.

The time evolution of the fraction of ∂Γf/∂t due to cross-diffusion for our Fr > 1
cases is shown in figure 15(a), and it clearly indicates that the major contributor to
dΓf/dt must be net cancellation with the baroclinic vorticity. With this in mind, we
now make indirect comparisons to a set of two-dimensional solutions to determine
whether or not we believe Γf would decrease as sharply for larger Re. The time
evolutions of the circulation of two-dimensional vortex pairs computed at Fr = 2
and several Re are shown in figure 15(b). Qualitatively, the circulation in each case
decreases initially due to net cancellation with baroclinic vorticity (up to roughly
t ' 3− 4), but then decreases more rapidly due to cross-diffusion accelerated by the
vortices’ advection towards one another by the baroclinic vorticity. This second phase
is irrelevant for our desired comparison to the three-dimensional case, as the Crow
instability increases the separation distance in plane f and, as already determined,
cross-diffusion is never a major contributor to ∂Γf/∂t. The time evolution of ∂Γ/∂t
up to the time (in each case) when cross-diffusion begins to contribute more than
10% for the two-dimensional cases is shown in figure 15(c). Clearly, the circulation
decreases more slowly for larger Re, and we infer for the general (laminar) three-
dimensional case that Γf would decrease more slowly (for fixed Fr) for larger Re.
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Figure 14. Contours of the vorticity in plane f for the Fr = 2 case at (a) t = 2.5 and (b) t = 4.5.
The contour levels are shown at ±1,±2,±3,±4,±5,±10,±20,±30, etc., and all regions of negative
vorticity have been shaded.

Now consider the time evolution of Γr/Γf (see figure 11). We note that in terms
of net production of spanwise circulation on the centreplane, (4.2) is supplemented
by (4.6) for the stratified cases. Baroclinically produced vorticity augments the ring
vorticity, and so the minimum circulation of the vortex ring is no longer exactly
Γf − Γc. However, we have determined that the total contribution of the baroclinic
term is less than 5% of the contribution by reconnection (i.e. the source part of
the first term of (4.2)). Therefore, we continue to use Γf − Γc as an approximate
measure of the minimum circulation of the vortex ring. Because Γf/Γ0 decreases so
sharply, the quantity Γr/Γ0 gives a better estimation of the minimum circulation (the
maximum circulation is Γf/Γ0) of the vortex ring as it forms (see figure 16). Through
consideration of either of these quantities, it is clear that the reconnection proceeds
more rapidly for smaller Fr. In fact, for the Fr 6 2 cases, the reconnection also
reaches completeness (see figure 11) in the sense that no original vorticity survives in
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Figure 15. (a) The fraction of dΓf/dt that is due to cross-diffusion of the primary vortices for
the Re = 942 cases with Fr = 8 (short-dashed), Fr = 4 (solid), Fr = 2 (dot-dashed), and Fr = 1
(long-dashed). (b) The time evolution of the circulation of two-dimensional vortex pairs with Fr = 2
and Re = 942 (short-dashed), Re = 1260 (solid), Re = 1570 (dotted), Re = 3140 (dot-dashed), and
Re = 6280 (long-dashed). (c) dΓ/dt upto the time (in each case) at which cross-diffusion begins to
contribute more than 10% to the total for the same cases shown in (b).

plane c and there are no threads of vorticity that survive external to the vortex ring
as in the larger Fr cases. This occurs by t ' 7 and t ' 5 for the Fr = 2 and Fr = 1
cases, respectively. The reasons for this sharp departure from the unstratified result
of incomplete reconnection no matter how rapidly it proceeds at intermediate times
are discussed in § 4.4.

The faster reconnection in the stratified cases results from the advection of the
primary vortices toward the centreplane by the baroclinic vorticity (already discussed).
Although this advection is not present in (4.2)–(4.4) (as augmented by (4.6)), its
effects are felt through the steepening of the vorticity gradients that are present in
the centreplane equations. Contours of (2π/Re)(∂ωx/∂y) (showing the magnitude and
distribution of cross-diffusion) and the source part of (2π/Re)(∂2ωy/∂y

2) (showing the
magnitude and distribution of actual reconnection of vorticity) are shown in figure
17. These contours indicate clearly that the vorticity gradients increase more rapidly
(in both magnitude and extent) for smaller Fr, and so the reconnection proceeds
more rapidly. We note that, although it is not shown in figure 17, cross-diffusion of
baroclinically produced vorticity also occurs (in the stratified cases) at the centreplane
in the regions where the baroclinic sheets of vorticity are detrained behind the primary
vortices (see, e.g. the Fr = 1 case at t = 2.5 in figure 13). The baroclinic vorticity has
the opposite sign of the original vorticity, and so its contributions to (2π/Re)(∂ωx/∂y)
and (2π/Re)(∂2ωy/∂y

2) are of the opposite sign as well.
We note that Virk et al. (1995) found that compressible effects (specifically, shocklet-

aided bridging) also lead to faster reconnection. However, that effect then leads to
a longer reconnection timescale as the earlier circulation transfer impedes growth
in curvature of the vortex tubes, and the curvature reversal effect then occurs more
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Figure 16. The time evolution of Γr/Γ0 (a) and the average vertical position of the primary vorticity
(b) for the Re = 942 cases with Fr = ∞ (dotted), Fr = 8 (short-dashed), Fr = 4 (solid), Fr = 2
(dot-dashed), and Fr = 1 (long-dashed).

rapidly. This effect is quite different from the (incompressible) stratification effect we
have discussed, whereby circulation transfer is enhanced at all times via the decrease
in 〈b〉 caused by the baroclinic vorticity. If we understand their results correctly, they
used a constant Fr ' 2.2 for all of their calculations, and varied the speed of sound
to vary their Mach number M. We believe that if Fr were varied for fixed M, then the
reconnection timescale would decrease for smaller Fr (within the nonlinear regime of
Fr).

Consider the possible discrepancy between our results and the results of Virk et al.:
reconnection is increased at all times (see figure 11) in our stratified flows (the Fr = 2
case gives the closest comparison to Virk et al.’s Fr = 2.2) via advection by baroclinic
vorticity towards the centreplane, while reconnection is increased slightly at early
times but decreased slightly at later times in Virk et al.’s stratified and compressible
M = 0.5 flow (compared to their incompressible, unstratified flow – see their figure
5a). Why is the evolution of their M = 0.5 case, stated to be largely incompressible
(though still stratified), not more consistent with the evolution of our stratified flows?
One must make this comparison between the flows very carefully.

We believe it is clear from Virk et al.’s figure 2(a) that their threads undergo
curvature reversal well before t = 6 and perhaps as early as t = 4.1. As stated
previously, self-induction of each thread then contributes to an increase in thread
separation (presumably overriding the contribution to a decrease in thread separation
by the baroclinic vorticity) and a decrease in reconnection. This is borne out by Virk
et al.’s figure 12(a) which shows that thread separation begins to increase at roughly
t = 4.5. In all of our flows, however, the curvature of the threads never reverses and, in
our Fr = 2 and Fr = 1 cases, thread separation decreases at all times (see figure 20c).
We believe that the curvature reversal, or lack thereof, is a key difference between
the flows, and believe it occurs in Virk et al.’s M = 0.5 case but not our flows for
(at least) the following two reasons: first, their larger initial perturbation appears to
lead more easily to curvature reversal (this point is discussed within the comparisons
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contours of (2π/Re)(∂2ωy/∂y

2) are shaded.

made in § 4.4); and second, even if the M = 0.5 case is largely incompressible, the
compressible effect still slightly increases the reconnection at early times (the pattern
of behaviour in their figure 5(a) seems obvious), and, as Virk et al. discuss, this earlier
reconnection leads to even more rapid curvature reversal.

Finally, the contours shown in figure 17 indicate that the primary vorticity propa-
gates downwards less far for smaller Fr (e.g. in the Fr = 1 case, all of the reconnection
occurs at a height that is nearly constant when compared to the unstratified case).
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The time evolution of the average vertical position of the primary vorticity is shown
in figure 16(b) for all of our stratified cases; in each case, this average position is only
tracked while the primary vortices can be viewed as the dominant flow feature. These
plots confirm that a smaller Fr results in the primary vortex ring not penetrating as far
down, and in fact propagating back upwards slightly while it remains the dominant
flow feature. The slowed descent of the primary vortices apparently results from the
decrease in their total circulation (see figure 11), while the tendency to propagate
back upwards results from the flow field of the baroclinic vorticity.

4.3. Vortex reconnection timescale dependences

The curves in figures 7, 11, and 16, indicate that reconnection occurs on a faster
timescale for larger Re and smaller Fr (within the ranges we have considered); we
now discuss a reconnection timescale (tR) that captures these dependences. To remove
arbitrariness potentially brought about by our specific choice of initial conditions,
and to avoid decisions on when the reconnection begins or concludes, we measure tR
in the following way: we define tR as the negative inverse of ∂Γc/∂t at the instant in
time when Γc = Γf/2. Note that tR is the time it would take for complete reconnection
were ∂Γc/∂t constant for all time.

Shelley et al. (1993) summarized the theories of Siggia & Pumir (1987) on singularity
configurations and extended their results to predict tR ∼ 1/Re (for our definition of tR)
for the unstratified case. They also summarized work by Kambe (1983) and Buntine
& Pullin (1989) which leads to predictions that tR has logarithmic dependence on Re
for large Re. However, our results agree quite well with the extension to Siggia &
Pumir’s work, and we therefore include only a summary of that theory and attempt
to extend it to the stratified case.

Following Shelley et al. (1993), the decay of the circulation (Γ ) and change in the
separation distance (δ) can be crudely modelled by

∂Γ

∂t
= − 1

Re

Γ

δ2
, (4.7)

∂

∂t
δ2 = −Γ , (4.8)

and these equations can be combined to obtain

δ2(t) = eRe(Γ (t)−1), (4.9)

where the initial separation and circulation are taken to be 1. The circulation remains
virtually constant until the singularity time, given by ts = 1 in these units, and then
drops rapidly to zero over a time equal to tR . It is then possible to show via asymptotic
expansion that for large Re tR ∼ 1/Re.

The values of tR as measured from our three unstratified simulations are shown in
figure 18(a). Because of our limited range of Re, we have decided to augment these
results with the results of two larger Re runs which utilize the filtering technique
described in § 2.3. A least-squares fit of these five data points to the functional form
cr/Re yields cr ' 4200, and the curve corresponding to 4200/Re is also shown in
figure 18(a) for comparison. As previously intimated, our results appear to agree quite
well with the prediction of this model. It is interesting to note that inclusion of the
two larger Re measurements changes cr by less than 0.5%.

Now, consider how to extend this model to the stratified case. One approach is to
simply include another term in (4.8) that accounts for the advection of the vortices
by the baroclinic vorticity. Because time is normalized by the singularity time in this
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Figure 18. (a)The values of tR as a function of Re for our resolved (star symbol) and filtered
(diamond symbol) unstratified simulations, compared to the curve 4200/Re. (b) The values of tR
as a function of Fr (star symbol) for our stratified simulations (all at Re = 942), compared to the

curves 3.75− 2.83/Fr (solid), 3.94− 3.91/Fr (dashed), and 3.94− 7.76 exp (−√Fr) (dotted).

model, however, it would be quite problematic to include a time-dependent term.
As already discussed, the results of previous two-dimensional numerical simulations
as well as the three-dimensional numerical simulations reported here indicate that
the advection by the baroclinic vorticity decreases the separation distance in general
accordance with b ∼ exp (−c0t/Fr) for some constant c0 (see Spalart 1996, the
discussion of equation (3.7) and figure 6 in Garten et al. 1998, and figure 6 of this
paper). The leading-order approximation to the contribution of the advection by the
baroclinic vorticity to ∂b2/∂t is then −2c0/Fr, and we believe that (4.8) is then best
modified as follows:

∂

∂t
δ2 = −Γ − c

Fr
, (4.10)

where we relax preconceptions regarding the value of the constant c. Equation (4.9)
then becomes

δ2(t) = ΓcRe/FreRe(Γ (t)−1), (4.11)

and it is possible to show that tR ∼ 1/Re− c/Fr.
The measured values of tR for our stratified cases are shown in figure 18(b), plotted

against 1/Fr so that the unstratified (Fr→∞) case may be included. A least-squares
fit of these five data points to the functional form a–c/Fr † yields a = 3.75 and
c = 2.83, and the curve corresponding to 3.75 − 2.83/Fr is shown in figure 18(b) for
comparison. In this case, the agreement between our data and the model’s prediction
is not as good. However, if we exclude the Fr = 1 result from the least-squares fit, we
obtain a = 3.94 and c = 3.91, and the agreement improves substantially (see figure

† Since all of the stratified cases are at the same Re, we believe it is best to calculate the
least-squares fit for tR(Fr) independently of the previous one that found cr = 4200, or equivalently,
a = 4.46.
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Figure 19. (a) The absolute curvature κ of the vortex tubes at plane c (plotting symbols), compared
to the expected κ from instability growth alone (lines), for the unstratified cases with Re = 628
(cross, dotted), Re = 942 (star, dashed) and Re = 1260 (diamond, solid). (b) As in (a), but now lines
shows the actual curvature ratio (κy/κz). (c) As in (b), but for the separation distance between the
vortex bridge centroids. (d) As in (b), but for the maximum value of vorticity in plane c.

18b). In anticipation of models that may arise to predict different functional forms
for tR(Fr), we also note that a survey of polynomials and exponential functions shows
that the function 3.94− 7.76 exp (−√Fr) fits our data quite well (see figure 18b).

4.4. On the completeness of reconnection

We begin our comparisons to Melander & Hussain’s conceptual model with figure
19(a), which shows the time evolution of the absolute curvature, κ, of the vortex
tubes at their position of closest approach (plotting symbols). At early times, the
curvature increases because of instability growth: in the absence of other effects, the
curvature of a sinusoidal displacement is proportional to its amplitude. However, κ
increases more than would be expected from the instability growth alone (line plots),
and the discrepancy increases for larger Re. We believe that the positive feedback
between self-induction closer to the centreplane due to increased curvature and faster
propagation of the closest portion of the vortex tubes (see, e.g., Moore 1972; Saffman
1992) is responsible for this discrepancy, and we expect that the peak value of κ
continues to increase for still larger Re. However, we note that the time at which
the peak κ is attained decreases with time (towards some non-zero limit), and this
suggests that other effects do intervene to keep κ from racing off to ∞.

We first point out that the positive feedback mechanism that increases curvature
relies on the assumption of constant circulation with time (as well as on assumptions
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regarding core distribution, of which we do not attempt inclusion), but of course
the thread circulation at the position of closest approach (Γc) decreases with time.
However, there does not appear to be a clear connection between Γc at the time of
peak κ for the different Re cases. The time of peak κ is roughly t = 4, 3.8, and 3.5 for
Re = 628, 942, and 1260, respectively, while Γc/Γ (0) for each case and given time is
roughly 0.77, 0.76, and 0.82. Therefore, we next look for evidence that flow induced
by the vortex bridges is responsible more directly for the decrease in curvature (as
explained by Melander & Hussain).

Figures 1 and 10 give a visual sense of the location of the vortex bridges with time
for the Re = 942 case, while figure 19(c) shows the time evolution of the horizontal
distance between the centroids of the two vortex bridges where they intersect the
centreplane for all three cases. Since bridge formation is a continuous process, it
is difficult to pick a particular time to look for subsequent effects on the thread
curvature. However, it is reasonable to assume that once bridge circulation builds up
significantly, the self-induction of each bridge away from the other should be virtually
simultaneous with their induced flow’s decrease in curvature of the threads. In fact,
our results show that the time at which the two vortex bridges begin to move quickly
apart from one another (figure 19c) is in each case consistent with the time of peak
κ (a point of strong agreement with Melander & Hussain).

Melander & Hussain also predicted that stretching of the threads by the vortex
bridges sustains reconnection and also ensures well-defined vortex cores. Figure 19(d)
shows the peak magnitude of vorticity in plane c, ωc (i.e. ωc = Max (ωx(x = c, y, z))),
normalized by the value at t = 0. At early times (t 6 2.5), ωc decreases because of
viscous expansion. This is because viscous expansion leads to a larger vortex core
size (e.g. (3.1)), and, for constant circulation, the product σ2ωc remains constant
(for Gaussian vortices, Γ = 2πσ2ωc). Once reconnection commences, the circulation
decreases, and, if we neglect the core deformations from the Gaussian distribution,
ωc decreases further. However, our results show that ωc does increase after a time,
again consistent with significant bridge formation (though slightly earlier in each
case than the time suggested by the curvature and separation effects). Although
this is another point of agreement with Melander & Hussain, we note that this
stretching-induced increase in ωc is not sustained, as Melander & Hussain appeared
to suggest. We note that the time that the local peak of ωc is attained is consistent
with the time at which the bridge separation is roughly 3.25 for the different Re cases
(an earlier time for larger Re), and that ωc decreases sharply after this time. Our
interpretation is that the stretching effects at the position of closest approach decrease
in importance significantly as the spatial distance to the vortex bridges increases. This
is an important point in the light of the difference from Melander & Hussain that we
discuss next.

We first introduce the following notation. Let κy and κz represent the curvature of
each thread (in magnitude) measured at the position of closest approach when the
spatial positions of the thread are projected onto (x, y)- and (x, z)-planes, respectively.
The sign of κy/κz is defined such that κy/κz > 0 results in self-induction of the positive
thread upwards/towards the centreplane, while κy/κz < 0 results in self-induction of
the positive thread downwards/away from the centreplane. As discussed previously,
the flow induced by the vortex bridges decreases κz (i.e. the curvature is reduced).
According to Melander & Hussain, that flow then changes the sign of κz (i.e. the
curvature is reversed), and the threads self-induct away from one another, effectively
arresting the reconnection. Although this curvature reversal occurs fairly rapidly in
their results (see their figure 2), we cannot stress enough that κz does not change sign
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Figure 20. (a) As in figure 19, but for yc. (b) As in figure 19, but for the total advective (three lower
curves) and diffusive (three upper curves) contributions to ∂yc/∂t, as well as their total (plotting
symbols). (c) As in (a), but for the Re = 942 cases with Fr = ∞ (dotted), Fr = 2 (short-dashed), and
Fr = 1 (solid). (d) As in (b), but for the Re = 942 cases with Fr = ∞ (dotted), Fr = 2 (short-dashed),
and Fr = 1 (solid).

in any of our cases, nor does there appear to be any indication that it would were we
to compute our solutions to later times (the Re = 942 case has been checked up to
t = 10, and the Re = 628 case has been checked up to t = 11). This could be because
our smaller initial perturbations may allow the curvature to grow to a much larger
peak value (a comparison of our figure 1 and Melander & Hussain’s figure 2 does
indicate the curvature of our threads is more pronounced), and subsequent advective
effects are not strong or persistent enough to completely reverse the curvature. We
are not aware of other results that have included explicit quantitative information
regarding the time evolution of the curvature, and so have no concrete basis for
comparison on this point.

With this important difference in mind, we now point out the both unexpected
and quite important observation that the separation distance of our threads at the
position of closest approach does increase after roughly t = 6.75, 5.5, and 4.75 in
the Re = 628, 942, and 1260 cases, respectively (see figure 20a). This increase is
unexpected because so long as κz > 0, the threads should self-induct towards the
centreplane, not away from it; it is important because it suggests the possibility
of another effect which decreases the rate of reconnection (via decreased vorticity
gradients at the centreplane, as for the curvature reversal effect).

To understand how this could occur, we define (yc, zc) as the coordinates of the
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centroid of the positive thread in plane c; specifically†

yc(t) =

∫ Ly/2

0

∫ Lz

0

yωx(x = c, y, z, t)dy dz∫ Ly/2

0

∫ Lz

0

ωx(x = c, y, z, t)dy dz

, (4.12)

where the denominator is equal to the circulation Γc(t). The time rate of change of
yc can be computed straightforwardly, and rearranged into the form

∂yc(t)

∂t
=

1

Γc(t)

∫ Ly/2

0

∫ Lz

0

(y − yc(t)) ∂ωx
∂t

∣∣∣∣
(x=c,y,z,t)

dy dz, (4.13)

where

∂ωx

∂t

∣∣∣∣
(x=c,y,z,t)

= ωx
∂u

∂x
−
(
v
∂ωx

∂y
+ w

∂ωx

∂z

)
+

2π

Re

(
∂2ωx

∂x2
+
∂2ωx

∂y2
+
∂2ωx

∂z2

)
. (4.14)

The first term on the right of (4.14) represents vortex stretching in the x̂-direction,
and it has no net contribution to (4.13). The total contributions by the second and
third terms of (4.14) contain advective and diffusive effects, respectively.

The advective term includes flows due to all possible sources, which include the
three advective effects of the vortex bridges on the threads, each thread on the other,
and each thread on itself. The first advective effect contributes a mostly upwards
flow (and the curvature reduction already discussed), the second effect contributes a
mostly downwards flow, and the last effect contributes the self-induction flow due to
curvature (at earlier times, these latter two increase the curvature through positive
feedback). Since the first two contribute mostly in the vertical direction, we expect
that the self-induction term is the major contributor to (4.13)‡. This belief is consistent
with the time evolution of the advective contribution to (4.13) shown in figure 20(b).
Note in particular that this contribution, for each Re, increases when κ increases,
peaks at a time consistent with the time of peak κ, decreases thereafter when κ
decreases, and is always negative (i.e. leads to a smaller yc/smaller thread separation).
Even though the curvature remains larger for larger Re, the advective contribution
to yc decreases more rapidly. We believe this is because the circulation of the threads
decreases more rapidly for larger Re, and the magnitude of self-induction of a curved
vortex tube is proportional to its circulation.

Now consider the diffusive term. This term is non-intuitive, as diffusion might be
expected to be less important in general for larger Re. However, for our results, the
integrated effect of this term contributes more significantly to (4.13) for larger Re.
First, we note that the first part of the diffusive term contributes only a few percent
of the total diffusive contribution (for the Re we have considered); however, we must
leave open the possibility that this may not be true in cases of much larger κ (achieved
for larger Re than we have considered). The contribution by the remainder of the
diffusive term represents asymmetric diffusion of ωx (with respect to the centroid)
within plane c, and its time evolution is shown in figure 20(b). At early times (not
shown), diffusion is nearly (radially) symmetric with respect to the thread centroid,
and its contribution to (4.13) is nearly zero. However, its contribution to (4.13) is

† As for (4.3), in the stratified cases, the following area integrals are computed over only the
region bounded by the zero vorticity line between the primary and background vorticity.
‡ Virk et al. (1995) discuss these advective contributions in greater detail; however, they do not

retain the diffusive term, which appears to play an important role in our simulations.
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always positive (i.e. leads to a larger yc and a larger thread separation), and increases
to some peak value, whereafter it decreases slowly in magnitude.

A simple physical interpretation of the diffusive term is that the deformation of the
thread cross-section (see § 4.1 and in particular figures 9 and 10) and the proximity
of the centroid to the centreplane results in more diffusion of vorticity away from
the centreplane than towards it (relative to yc); a more detailed interpretation and
analysis may appear in future work. We note that, for each Re, the magnitude of
the diffusive contribution increases as the deformation increases, and peaks at a time
consistent with the time of peak deformation (judged visually). A larger Re first leads
to less deformation (the thread core size grows more slowly), but then leads to both an
earlier deformation (the thread nears the centreplane more rapidly due to both more
rapid instability growth and more rapid curvature growth), and a more significant
deformation (the limit on cross-diffusion is enhanced) of the thread cross-section
(see figure 20b). Therefore, a larger Re results in a larger and more rapidly attained
peak contribution by the diffusive term. We note that the time at which this peak is
achieved is in each case consistent with the time at which Γc/Γf = 1/2, and that the
diffusive contribution thereafter falls off more rapidly for larger Re. This observation
may provide important guidance for revised reconnection models, as the ‘singularity
time’ is often defined as the time at which the reconnection is 50% complete (e.g.
§ 4.3).

Once the diffusive contribution to (4.13) attains a larger magnitude than the
advective contribution, this remains true for the remainder of our evolutions. Past
this time, ∂yc/∂t > 0, and the thread separation increases. Even though curvature
reduction (as explained by Melander & Hussain) does play a very important role,
we therefore see the deformative/diffusive process as a second effect (similar to
yet distinct from the curvature reversal of Melander & Hussain) which prevents
complete reconnection. We further believe that the initial conditions and Re of
a particular vortex reconnection experiment will determine the importance of the
deformative/diffusive effect compared to the curvature reversal effect (and perhaps
other yet undiscovered effects).

Now that we have discussed the completeness of reconnection issue for our unstrat-
ified flows in great detail, we discuss the completion of reconnection in our Fr = 1 and
Fr = 2 flows (see § 4.2, and in particular figure 11) within the same context. As before,
κz never changes sign in these flows, and so curvature reversal does not take place. To
determine the role of the deformative/diffusive effect, we must strictly augment (4.14)
with (4.5). Although the total contribution by this baroclinic term is negative during
the time interval of interest, it is much smaller in magnitude than the contributions
by the advective and diffusive terms. It is small in magnitude because, after t ' 2, the
region of fluid carried with the vortices is internally well mixed (see figure 12 of this
paper and figure 2 of Garten et al. 1998), and the area integral in (4.13) is computed
over only the region of the primary vorticity. Its contribution is negative because it
decreases ωx mostly in the outer boundary region where y − yc > 0.

Consider the contribution by the advective term. The initial instability grows more
rapidly for smaller Fr, and subsequently the curvature of each thread grows more
rapidly. The advective term now also includes the advective effect of the baroclinic
vorticity on the thread (e.g. the evolution of 〈b〉/b0 in figure 6), which also increases
in importance for smaller Fr. Both of these effects contribute to the dramatic, more
rapid increase in magnitude of the advective contribution for smaller Fr shown in
figure 20(d). As for the unstratified cases, the advective contribution peaks and then
decreases in magnitude due to both curvature reduction (via the flow induced by the
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vortex bridges) and a decrease in thread circulation. Since the reconnection proceeds
more rapidly for smaller Fr, both of these effects lead to the more rapid decrease
from the peak for smaller Fr also evident in figure 20(d).

In the unstratified case, this decrease led to a smaller magnitude contribution to
(4.13) than by the diffusive term; however, this is not true for these stratified cases (see
figure 20d). This is somewhat surprising, because the more rapid decrease in yc (see
figure 20c) should result ideally in greater deformation of the thread cross-section.
Indeed, the contribution by the diffusive term does increase more rapidly for smaller
Fr (see figure 20d). However, it does not increase rapidly enough to overtake the
advective term, and it peaks (as in the unstratified case, at a time consistent with
when Γc/Γf = 1/2), and then decreases without ever doing so. Therefore, ∂yc/∂t never
changes sign, the thread centroids advect towards the centreplane (i.e. yc decreases) at
all times (see figure 20c), and eventually cross-diffusion eliminates the thread entirely.
We note that in the Fr = 4 and Fr = 8 cases (not shown), the diffusive term is robust
enough to flip the sign of ∂yc/∂t, and the time evolution of bc is nearly identical to
the unstratified result.

5. The critical F r separating the regimes of behaviour
The points we have discussed indicate clearly that there is some critical Fr, FrC ,

across which a dramatic, qualitative shift in the behaviour occurs. Enhanced Crow
instability and subsequent more rapid reconnection results for smaller Fr within the
range Fr > FrC , while suppressed Crow instability and little or no reconnection results
for smaller Fr within the range Fr < FrC . Although many questions regarding this
transition could be raised, we restrict our attention to the following points.

Our results suggest that the time evolution of 〈b〉 reveals the regime that a particular
simulation is in, and we therefore consider its Fr-dependence to obtain an approximate
value for FrC . Since we are convinced that the physical mechanisms responsible for a
time-evolving 〈b〉 are two-dimensional, we have augmented our results with a number
of two-dimensional simulations calculated with different Fr, Re, and Pr. (See Garten
et al. 1998 for discussion of the two-dimensional numerical model.) Figure 21(a) shows
the time evolution of the separation distance, b, of two-dimensional vortex pairs at
different Fr, but all with Re = 942 and Pr = 1. Note that b increases for Fr 6 0.65,
and decreases for Fr > 0.675; we therefore believe that 0.65 < FrC < 0.675.

We wish to estimate the dependence of FrC on Re and Pr. Therefore, we continue
to use our two-dimensional conceptualization, and we consider again the underlying
causes of an increase or decrease in b. In the large Fr limit (Fr→∞), the background
is of nearly constant density, and the two-dimensional vortex pair would propagate
without change until a viscous timescale were reached. So long as Fr is finite (Fr >
FrC), however, previous (Garten et al. 1998) and current (not shown) results indicate
that baroclinic vorticity forms due to the stratification, concentrates mostly on the
outer sides of the primary vortices, and then advects the primary vortices towards one
another (b decreases). These results have also shown that a decrease in b is discernible
by t ' 2, independent of Fr. In the small Fr limit (Fr → 0), the fluid equations are
nearly linear, and perturbations may be described in terms of linear gravity waves
which propagate away from the point of origin. Indeed, previous (Garten et al. 1998)†
† We note that figures 7 and 10 in Garten et al. (1998) were erroneously swapped in publication.

In that paper, the Fr = 1/8 case is actually depicted in figure 10, and the Fr = 1/4 case is actually
depicted in figure 7. We apologize for the potential confusion, but wish to warn the careful reader.
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and current (e.g. figure 21g) results indicate that these flows display the pattern of
gravity wave radiation from a localized source within roughly 1–2 buoyancy periods
(TB = 2π/N = 2πFr) after the initial vortex pair excitation. These results also show
that, at earlier times, regions of baroclinic vorticity concentrate on the outer sides, in
between, and all around each of the original vortices, with the net advective effect
of driving the original vortices away from one another (b increases). This motion is
discernible by TB/2, and continues up to times at which the original vortices lose
their identity within the increasingly complex flow field.

Note that for Fr ' FrC , TB/2 ≈ 2. Therefore, we expect the beginnings of an
increase (Fr < FrC) or decrease (Fr > FrC) in b for Fr ' FrC by t ' 2, an expectation
borne out qualitatively by the observations in figure 21(a). So, we consider the
vorticity field at t = 2 for two Fr on either side of FrC (see figure 21c, d). Even
though the differences in the distribution of baroclinic vorticity are small at this
time in the evolutions (their Fr are nearly equal), they nonetheless reveal which side
of FrC each case lies on. Together with other solutions which we have examined
(not shown), these results lead us to believe that the relevant issue is the amount of
baroclinically produced vorticity that resides in between the primary vortices during
this crucial early time. In the Fr = 0.7 (figure 19d) and all other Fr > FrC cases we
have examined, baroclinic vorticity is advected around each primary vortex and away
from the region between them; later times in the flow (see figure 21f, h) look similar
to the two-dimensional cross-sections shown in figures 12–14. In the Fr = 0.6 (figure
21c) and all other Fr < FrC cases we have examined, baroclinic vorticity builds up
in all regions surrounding the primary vortices, and the magnitude of these regions
is greater everywhere; later times in the flow (see figure 21e, g) look similar to figure
7 in Garten et al. (1998). It is through understanding of this build up of baroclinic
vorticity between the primary vortices (or lack thereof) that we hope to estimate the
dependence of FrC on Re and Pr.

Consider whether or not the baroclinic source of vorticity can by itself explain
directly the different behaviour in the two regimes. We find that, for Fr ≈ FrC , the
evolution of the (non-dimensional) density field is virtually identical up to at least
t = 1. The density gradients are thus also nearly identical, and so the magnitude of
the baroclinic source varies in comparison as 1/Fr2 (see e.g. (4.5)) at these early times
in the evolution. Although the different amounts of baroclinic vorticity thus produced
are clearly important to later times in the flows, they are not in themselves adequate
to explain the different distributions of baroclinic vorticity we observe by t ' 2. This
is because the advection of the baroclinic vorticity around each primary vortex should
be largely independent of the magnitude of the baroclinic vorticity (presuming it is
much less than the magnitude of the primary vortices). To expand slightly on this
point, the advection of the baroclinic vorticity around each primary vortex should

Figure 21. (a) The time evolution of the separation distance of two-dimensional vortex pairs with
Re = 942, Pr = 1, and, from top to bottom in the panel, Fr = 0.6, 0.625, 0.65, 0.675, and 0.7.
(b) As in (a), but for Re = 942, Pr = 7, and Fr = 0.65,0.675,0.7, and 0.725 (solid lines) and
Re = 9420, Pr = 1 and Fr = 0.725, 0.75, 0.775, and 0.8 (dashed lines). (c–h) Contours of vorticity
for the two-dimensional cases with Re = 942, Pr = 1, and Fr = 0.6 (left) and 0.7 (right) at t = 2
(c, d), t = 4 (e, f), and t = 6 (g, h). Contour levels at ±10,±20,±30, etc. show the distribution
of high-magnitude vorticity, while additional contour levels at ±1,±2,±3,±4,±5 illustrate the
distribution of low-magnitude vorticity, and all regions enclosed by negative contours are shaded.
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ideally be governed by an advective process given roughly by

∂ωb

∂t
= −vp · ∇ωb, (5.1)

where here vp represents the rotational velocity due to each primary vortex and ωb
represents the distribution of baroclinic vorticity. Insofar as this view is accurate,
the removal rate of baroclinic vorticity from the region between the vortices is
proportional to the amount of baroclinic vorticity in that region. Therefore, a larger-
magnitude baroclinic source does not lead directly to a buildup of baroclinic vorticity
between the primary vortices.

The key insight is that the effective rotational/removal velocity magnitude can be
reduced significantly from |vp| by the advective effects of the baroclinic vorticity itself.
The larger the amount of baroclinic vorticity, the larger the reduction in |vp|, and
the greater the potential for baroclinic vorticity to build up in the area between the
primary vortices (leading to a further reduction in |vp|, and so on). We believe that
for Fr < FrC , this process successfully prevents the removal of baroclinic vorticity
from the region between the vortices, and the evolution then diverges rapidly from
the Fr > FrC case.

Note that neither Re nor Pr appear explicitly in any of our arguments. However,
the distribution of density gradients at early times is part of our reasoning, and the
rate at which these gradients diffuse is affected by Re and Pr (e.g. (2.7)). Larger Re
and/or Pr allow density gradients to remain larger, and so the baroclinic source is
effectively increased in magnitude (for fixed Fr). Therefore, we expect FrC to shift
to larger values for increasing Re and/or Pr. Figure 19(b) shows the time evolution
of b for two-dimensional vortex pairs with different Fr, Re, and Pr, and appears
to support our belief within the portion of parameter space we have considered.
Specifically, FrC ≈ 0.675 for Re = 942 and Pr = 7, while FrC ≈ 0.775 for Re = 9420
and Pr = 1.

We see no reason why FrC should be significantly different for the three-dimensional
case. However, the computational cost to make this determination is too great at
present, and so we must leave open the possibility that the detailed dynamics of the
three-dimensional distribution of vorticity could alter FrC by some small amount. We
do note that, since the separation distance is not constant along the vortex tubes, the
closest portions of the vortex tubes could evolve at an effective Fr > FrC while their
remainder evolve at an effective Fr < FrC (for constant circulation, Fr ∼ 1/b2). We
believe this could result in a vortex ring that forms very quickly from the original
vortex tubes, but loses its dominance of the flow with the rapid advent of baroclinic
vorticity.

6. Discussion
We have found that ambient stratification can affect substantially the evolution of

anti-parallel vortex pairs which undergo the Crow instability and subsequent vortex
reconnection. Our unstratified simulations show that the growth rate of the Crow
instability has some Re dependence in the range of Re we are able to access, and
we have presented a simple extension to Crow’s model to explain this dependence.
Our stratified simulations show that relatively strong ambient stratification (Fr 6 2)
further alters the growth of the Crow instability when baroclinically produced vorticity
either advects the primary vortices towards one another (Fr > Frc), leading to a
faster growth, or away from one another (Fr < Frc), retarding the growth and
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preventing significant vortex reconnection from ever commencing. For the latter
regime, the growth of the three-dimensional instability is sufficiently slowed that
a two-dimensional description becomes increasingly sufficient for smaller Fr (see
Jaderberg 1980; Garten 1997; and Garten et al. 1998 for studies of two-dimensional
vortex pairs in strong ambient stratification). We also found that the boundary for
these different regimes of behaviour lies at FrC ≈ 2/3 for Re = 942 and Pr = 1, and
that FrC increases slightly for larger Re and/or Pr.

Our unstratified simulations also elucidate the Re dependence of the vortex re-
connection process. Although a larger Re delays the commencement of the vortex
reconnection, it increases the rate at which the vortex reconnection proceeds once
it does commence, and increases the asymptotic fraction of reconnected circulation
(i.e. Γr/Γf(t → ∞)). We defined a reconnection timescale, tR , as the negative inverse
of dΓc/dt at the instant in time when Γc = Γf/2, and we found that tR ∼ 1/Re, in
agreement with the extension of Shelley et al. (1993) to the work of Siggia & Pumir
(1987). We then discussed a deformative/diffusive effect which prevents the attainment
of complete reconnection. Although curvature reduction plays an important role in
this process, our discussion indicates that it should be viewed as different from the
curvature reversal effect discussed by Melander & Hussain (1989).

Our stratified simulations also show that the vortex reconnection phase of the
evolution is accelerated in moderate to strong ambient stratification (1 6 Fr 6 8).
The advection by the baroclinic vorticity that accelerates the Crow instability (for
a smaller range of Fr) later increases the vorticity gradients at the centreplane and
thereby enhances the cross-diffusion that results in vortex reconnection. For our
Fr = 1 and 2 cases, the continuous advection by the baroclinic vorticity leads to the
complete elimination of the threads, while for the larger Fr cases, threads continue to
survive up to very late times (past the times at which simulations were discontinued).
For our fixed Re, we have found that ambient stratification decreases tR by an
amount roughly proportional to 1/Fr, in qualitative agreement with our extension to
the previous model.

It is interesting to speculate on the relevance of our single-wavelength, small-Re,
laminar solutions for predictions on how the Crow instability and subsequent vortex
reconnection proceed in large-Re, turbulent flows. One truly naive approach would
be to assume that random motions and mixing brought on by ambient turbulence
are in some sense equivalent to an eddy viscosity that decreases the effective Re of
the flow. Insofar as this concept is valid, our results could be very relevant. However,
we are quite open to the idea of ambient turbulence nurturing other instabilities that
disrupt the evolution and alter it significantly from what occurs in the cases we have
considered. We have computed simulations with additional wavelengths (larger than
the vortex spacing) perturbed in both symmetric and antisymmetric configurations,
but our Re is apparently too small for the evolution to alter significantly. This is
particularly disappointing given the experimental results (Re = 2750) of Leweke &
Williamson (1998), who show that simultaneous modulated growth of short waves
(in their case, of the same order as the vortex core size), and their subsequent
breakdown, inhibit formation of distinct vortex rings, and lead to distinct periodic
regions of turbulent motion. The effects of these short waves on the reconnection
process itself are not clear to us at present, and simulations to explore this situation
may become the focus of future research. Although our results thus yield little insight
on how ambient turbulence might disrupt the evolution, a planned analysis of three-
dimensional vortex pairs evolving in ambient shear layers may provide additional
clues.
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